## Kinematics Test Review - Physics

- Motion is relative- whether a object is moving or not depends on your perspective/how you perceive it
- When asked to explain why something is not moving, (do not say not moving because the same speed, but through scope see same perspective) b/c not moving scope or object not changing size(bigger/smaller)
- Dot Diagrams
- Must have a start and direction (+,-)
- Space between the dots represents time(1 second) and distance(traveled in that time)
- When two dot diagrams, they are next to each other start
- If two dots line up, but it is at different seconds, they are in the same place, but not at the same time
- Slope in position vs. time ( x vs. t) graphs is called velocity
- Speed - a measure of how far in how long without regard to direction
- Velocity - cares about direction (can be '+' or '-'
- $\mathrm{x}=\mathrm{V}_{0} \dagger+\mathrm{x}_{0}$ - used to figure out a point, when 2 equations set equal, objects are at same position at same time (if from opposite directions, one of the velocities is negative)
- $x$ - position of object at time $\dagger$
- $V_{0}$ - initial velocity
- $\dagger$ - time
- $x_{0}$ - initial position

Displacement, Distance, Path length

- Displacement - how far object moves from its starting point to its final point (cares about direction)
- Change in $x=x_{f}-x_{0}$
- Distance - does not care about direction $=|x|$
- Path Length - think of car odometer, add distances together
- Average speed = path length/change in time(how long it took to travel)
- In a v vs. $\dagger$, the area between axis is the change in x(displacement)
- In a v vs. $\dagger$ graph, lines above $x$ axis - object moving in the ' $t$ ' direction and if below in '-' direction
- 2 indexes - velocity, speeding up index(how much velocity changed in 1 sec )
- Acceleration - change in velocity/change in time
- Acceleration of object in free fall $=+/-9.8 \mathrm{~m} / \mathrm{s}^{2}$
- Motion in the x direction is always constant, so acceleration is 0
- Change in velocity always downward with freefalling objects
- Can find initial speed of object by
- $X_{f}=a t+v_{0}$
- Or(without time)
*** If acceleration and velocity have the same signs, it is speeding up, but with different signs it is slowing down

These objects are moving with a positive velocity.






